Airflow elicits a spider's jump towards airborne prey. II. Flow characteristics guiding behaviour.
نویسندگان
چکیده
When hungry, the wandering spider Cupiennius salei is frequently seen to catch flying insect prey. The success of its remarkable prey-capture jump from its sitting plant into the air obviously depends on proper timing and sensory guidance. In this study, it is shown that particular features of the airflow generated by the insect suffice to guide the spider. Vision and the reception of substrate vibrations and airborne sound are not needed. The behavioural reactions of blinded spiders were examined by exposing them to natural and synthetic flows imitating the fly-generated flow or particular features of it. Thus, the different roles of the three phases previously identified in the fly-generated flow and described in the companion paper could be demonstrated. When exposing the spider to phase I flow only (exponentially increasing flow velocity with very little fluctuation and typical of the fly's approach), an orienting behaviour could be observed but a prey-capture jump never be elicited. Remarkably, the spider reacted to the onset of phase II (highly fluctuating flow) of a synthetically generated flow field with a jump as frequently as it did when exposed to natural fly-generated flows. In all cases using either natural or artificial flows, the spider's jump was triggered before its flow sensors were hit by phase III flow (steadily decreasing airflow velocity). Phase III may tell the spider that the prey has passed by already in case of no prey-capture reaction. Our study underlines the relevance of airflow in spider behaviour. It also reflects the sophisticated workings of their flow sensors (trichobothria) previously studied in detail. Presumably, the information contained in prey-generated airflows plays a similar role in many other arthropods.
منابع مشابه
Airflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.
The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little flu...
متن کاملPrey Detection and Prey Capture in Copepod Nauplii
Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed vi...
متن کاملFunction of bright coloration in the wasp spider Argiope bruennichi (Araneae: Araneidae).
There are two major competing explanations for the counter-intuitive presence of bright coloration in certain orb-web spiders. Bright coloration could lure insect prey to the web vicinity, increasing the spider's foraging success. Alternatively, the markings could function as disruptive camouflage, making it difficult for the insect prey to distinguish spiders from background colour variation. ...
متن کاملPropulsion efficiency and imposed flow fields of a copepod jump.
Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simul...
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 10 82 شماره
صفحات -
تاریخ انتشار 2013